References¶
Here are a list of references for the various components and algorithms used in YANK.
Todo
Turn this into a hyperlinked bibliography.
YANK¶
Rizzi A, Grinaway PB, Parton DL, Shirts MR, Wang K, Eastman P, Friedrichs M, Pande VS, Branson K, Mobley DL, Chodera JD. YANK: A GPU-accelerated platform for alchemical free energy calculations. In preparation.
OpenMM GPU-accelerated molecular mechanics library¶
Friedrichs MS, Eastman P, Vaidyanathan V, Houston M, LeGrand S, Beberg AL, Ensign DL, Bruns CM, and Pande VS. Accelerating molecular dynamic simulations on graphics processing units. J. Comput. Chem. 30:864, 2009. http://dx.doi.org/10.1002/jcc.21209
Eastman P and Pande VS. OpenMM: A hardware-independent framework for molecular simulations. Comput. Sci. Eng. 12:34, 2010. http://dx.doi.org/10.1109/MCSE.2010.27
Eastman P and Pande VS. Efficient nonbonded interactions for molecular dynamics on a graphics processing unit. J. Comput. Chem. 31:1268, 2010. http://dx.doi.org/10.1002/jcc.21413
Eastman P and Pande VS. Constant constraint matrix approximation: A robust, parallelizable constraint method for molecular simulations. J. Chem. Theor. Comput. 6:434, 2010. http://dx.doi.org/10.1021/ct900463w
Eastman P, Friedrichs M, Chodera JD, Radmer RJ, Bruns CM, Ku JP, Beauchamp KA, Lane TJ, Wang LP, Shukla D, Tye T, Houston M, Stich T, Klein C, Shirts M, and Pande VS. OpenMM 4: A Reusable, Extensible, Hardware Independent Library for High Performance Molecular Simulation. J. Chem. Theor. Comput. 2012. http://dx.doi.org/10.1021/ct300857j
Replica-exchange with Gibbs sampling¶
Chodera JD and Shirts MR. Replica exchange and expanded ensemble simulations as Gibbs sampling: Simple improvements for enhanced mixing. J. Chem. Phys. 135:19410, 2011. http://dx.doi.org/10.1063/1.3660669
MBAR for estimation of free energies from simulation data¶
Shirts MR and Chodera JD. Statistically optimal analysis of samples from multiple equilibrium states. J. Chem. Phys. 129:124105, 2008. http://dx.doi.org/10.1063/1.2978177
Long-range dispersion corrections for explicit solvent free energy calculations¶
Shirts MR, Mobley DL, Chodera JD, and Pande VS. Accurate and efficient corrections or missing dispersion interactions in molecular simulations. J. Phys. Chem. 111:13052, 2007. http://dx.doi.org/10.1021/jp0735987
Bibliography¶
[1] | William L. Jorgensen, Jayaraman Chandrasekhar, Jeffry D. Madura, Roger W. Impey, and Michael L. Klein. Comparison of simple potential functions for simulating liquid water. Journal of Chemical Physics, 79:926–935, 1983. |
[2] | Hans W. Horn, William C. Swope, Jed W. Pitera, Jeffry D. Madura, Thomas J. Dick, Greg L. Hura, and Teresa Head-Gordon. Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. Journal of Chemical Physics, 120:9665–9678, 2004. |
[3] | Gregory D. Hawkins, Christopher J. Cramer, and Donald G. Truhlar. Pairwise solute descreening of solute charges from a dielectric medium. Chemical Physics Letters, 246(1-2):122–129, 1995. |
[4] | Alexey Onufriev, Donald Bashford, and David A. Case. Exploring protein native states and large-scale conformational changes with a modified generalized Born model. Proteins, 55(22):383–394, 2004. |
[5] | John Mongan, Carlos Simmerling, J. Andrew McCammon, David A. Case, and Alexey Onufriev. Generalized Born model with a simple, robust molecular volume correction. Journal of Chemical Theory and Computation, 3(1):156–169, 2007. |
[6] | Hai Nguyen, Daniel R. Roe, and Carlos Simmerling. Improved generalized Born solvent model parameters for protein simulations. Journal of Chemical Theory and Computation, 9(4):2020–2034, 2013. |
[7] | Michael Schaefer, Christian Bartels, and Martin Karplus. Solution conformations and thermodynamics of structured peptides: molecular dynamics simulation with an implicit solvation model. Journal of Molecular Biology, 284(3):835–848, 1998. |
[8] | Jay W. Ponder. Personal communication. |
[9] | Lee-Ping Wang, Todd J. Martinez, and Vijay S. Pande. Building force fields: an automatic, systematic, and reproducible approach. Journal of Physical Chemistry Letters, 5:1885–1891, 2014. |
[10] | Michael W. Mahoney and William L. Jorgensen. A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. Journal of Chemical Physics, 112:8910–8922, 2000. |
[11] | H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma. The missing term in effective pair potentials. Journal of Physical Chemistry, 91:6269–6271, 1987. |
[12] | Guillaume Lamoureux, Edward Harder, Igor V. Vorobyov, Benoit Roux, and Alexander D. MacKerell Jr. A polarizable model of water for molecular dynamics simulations of biomolecules. Chemical Physics Letters, 418(1-3):245–249, 2006. |
[13] | Ulrich Essmann, Lalith Perera, Max L. Berkowitz, Tom Darden, Hsing Lee, and Lee G. Pedersen. A smooth particle mesh Ewald method. Journal of Chemical Physics, 103(19):8577–8593, 1995. |
[14] | Abdulnour Y. Toukmaji and John A. Board Jr. Ewald summation techniques in perspective: a survey. Computer Physics Communications, 95:73–92, 1996. |
[15] | Ilario G. Tironi, René Sperb, Paul E. Smith, and Wilfred F. van Gunsteren. A generalized reaction field method for molecular dynamics simulations. Journal of Chemical Physics, 102(13):5451–5459, 1995. |
[16] | Michael R. Shirts, David L. Mobley, John D. Chodera, and Vijay S. Pande. Accurate and efficient corrections for missing dispersion interactions in molecular simulations. Journal of Physical Chemistry B, 111:13052–13063, 2007. |
[17] | K.K. Wang, J.D. Chodera, Y. Yang, and Michael R. Shirts. Identifying ligand binding sites and poses using gpu-accelerated hamiltonian replica exchange molecular dynamics. Journal of Computed Aided Molecular Design, 27:989, 2013. |
[18] | S. Boresch, F. Tettinger, M. Leitgeb, and M. Karplus. Absolute binding free energies: a quantitative approach for their calculation. Journal of Physical Chemistry B, 107:9535, 2003. |
[19] | D.L. Mobley, J.D. Chodera, and K.A. Dill. On the use of orientational restraints and symmetry corrections in alchemical free energy calculations. Journal of Chemical Physics, 125:084902, 2006. |
[20] | John D. Chodera and Michael R. Shirts. Replica exchange and expanded ensemble simulations as gibbs sampling: simple improvements for enhanced mixing. The Journal of Chemical Physics, 2011. URL: http://scitation.aip.org/content/aip/journal/jcp/135/19/10.1063/1.3660669, doi:http://dx.doi.org/10.1063/1.3660669. |
[21] | Zhiqiang Tan. Optimally adjusted mixture sampling and locally weighted histogram analysis. Journal of Computational and Graphical Statistics, 26(1):54–65, 2017. |
[22] | K. Shoemake. Uniform random rotations. In D. Kirk, editor, Graphics Gems III, pages 124–132. Academic, New York, 1992. |
[23] | Michael R. Shirts and John D. Chodera. Statistically optimal analysis of samples from multiple equilibrium states. Journal of Chemical Physics, 129:124105, 2008. |
[24] | John D. Chodera. A simple method for automated equilibration detection in molecular simulations. Journal of Chemical Theory and Computation, 12(4):1799–1805, 2016. PMID: 26771390. URL: http://dx.doi.org/10.1021/acs.jctc.5b00784, arXiv:http://dx.doi.org/10.1021/acs.jctc.5b00784, doi:10.1021/acs.jctc.5b00784. |
[25] | Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization. Mathematical programming, 45(1-3):503–528, 1989. |
[26] | Erik Bitzek, Pekka Koskinen, Franz Gähler, Michael Moseler, and Peter Gumbsch. Structural relaxation made simple. Physical review letters, 97(17):170201, 2006. |
[27] | Benedict Leimkuhler and Charles Matthews. Efficient molecular dynamics using geodesic integration and solvent–solute splitting. Proc. R. Soc. A, 472(2189):20160138, 2016. |